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These are notes from my talk in the symplectic geometry seminar in the working
group of Klaus Mohnke, Chris Wendl, and Thomas Walpuski in Berlin.

The Lagrangian capacity is a symplectic capacity defined by Cieliebak and
Mohnke. In this talk, via a neck-stretching argument of Cieliebak-Mohnke [2], we
compare the Lagrangian and McDuff-Seigel capacities of Liouville domains. As a
consequence, we show that the Lagrangian capacity of a 4-dimensional convex toric
domain is equal to its diagonal. This positively settles a conjecture of Cieliebak and
Mohnke for the Lagrangian capacity of the 4-dimensional ellipsoids.

Our main references are Cieliebak-Mohnke [2], Pereira [5], Rizell [3].

1 Recall from the previous talk

Theorem 1.1. (Cieliebak-Mohnke [2], 2014) There are exactly (n−1)! holomorphic
sphere in the homology class of line [CP1] in CPn passing through a generic point
p ∈ CPn and having a tangency order n− 1 to generic local divisor containing p. In
terms of the notations from my previous talk, this means

NCPn,[CP1] ≪ T n−1p ≫= (n− 1)!

Definition 1.2. (McDuff-Siegel Capacities [4], 2022) Let (W,λ) be a non-degenerated
Liouville domain. Let Dp be a smooth local symplectic divisor passing through

p ∈ IntX. Define J (W,Dp) to be the space of all admissible almost complex

structures on the symplectic completion W that are integrable near p and Dp is
holomorphic. For k ∈ N, define

MS1
k(W ) := sup

J∈J (W,Dp)

inf
u



D2

u∗dλ ∈ [0,∞]
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where the infimum is taken over asymptotic J-holomorphic disks in W with
≪ T k−1p ≫ .

2 Toric domains

Definition 2.1. (Convex toric domains) Let Ω ⊂ Rn
+ denotes a convex subset

containing 0. Consider µ : Cn → Rn
+ given by

µ(z1, z2, . . . , zn) := π(|z1|2, . . . , |zn|2).

A convex toric domain in Cn is a subset XΩ ⊂ Cn of the form

XΩ = µ−1(Ω).

The diagonal of a convex toric domain XΩ is defined by

diagonal(XΩ) := sup{a > 0 : (a, a, . . . , a) ∈ Ω}.

Remark 2.2. Let δ = diagonal(XΩ), the Lagrangian torus S1(


δ
π
)× · · ·× S1(


δ
π
)

stands on the boundary of (XΩ,ω0).

Example 2.3. (Example of a convex toric domain) Let 0 < a1 ≤ a2 < ∞,

E(a1, a2) := {(z1, z2) ∈ C2 :
2

i=1

π|zi|2
ai

≤ 1}
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E(a1, a2) := µ−1(Ω)

diagonal(E(a1, a2)) =
1

2
i=1

1
ai

.

In general,

diagonal(E(a1, . . . , an)) :=
1n
i=1

1
ai

.

Definition 2.4. (Symplectic engery of Langrangain tori) Let (M,ω) be a symplectic
manifold and L ⊂ (M,ω) be an embedded Lagrangian torus. The symplectic energy
of L is defined as

Amin(L) := inf{


D2

u∗ω > 0 : u : (D2, ∂D2) → (M,L)}.

Example 2.5. For the Clifford torus LClif := S1(r)× ·× S1(r) ⊂ (Cn,ω0) we have

Amin(LClif ) = πr2

Example 2.6. For the product torus Lstd := S1(1)× S1(2) ⊂ (C2,ω0) we have

Amin(Lstd) = π.

Example 2.7. Let δ = diagonal(XΩ), Lstd = S1(


δ
π
)× · · ·×S1(


δ
π
) = µ−1(δ, δ) ⊂

(XΩ,ω0), so
diagonal(XΩ) = Amin(Lstd).

The energy of a Lagrangian sub-manifold remembers how the Lagrangian sits in
the ambient symplectic manifold. This was conjectured by Cieliebak and Mohnke

as follows:
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Conjecture 2.8. (Cieliebak-Mohnke [2], Conjecture 1.9) If a Lagrangian torus in
(Cn,ω0) intersects the interior of the ball B̄2n(


nAmin(L)/π), then it must intersect

its exterior as well.

Conjecture 2.9. (Weak version of this conjecture) A Hamiltonian flow on (Cn,ω0)
can not squeeze a Lagrangian torus L in Cn into the open ball of radius


nAmin(L)/π.

Theorem 2.10. (Georgios Rizell [3]) The following is true:

• Every Lagrangian torus in (B̄4(1),ω0) with energy π/2 lies totally on the bound-
ary S3.

• Every Lagrangian torus in (B̄4(1),ω0) with energy π/2 is Hamiltonian isotopic
to the Clifford torus S1( 1√

2
)× S1( 1√

2
) on S3.

Open Problem 2.11. The above conjecture is open for n > 2.

Definition 2.12. (Lagrangian Capacity, Cieliebak-Mohnke [2], 2014) For a sym-
plectic manifold (M,ω), the number cL(M,ω) ∈ [0,∞] defined by

cL(M,ω) := sup{Amin(L) : L ⊂ (M,ω) is embedded Lagrangian torus }

is a symplectic capacity known as Lagrangian capacity of (M,ω).

:

Theorem 2.13. (Cieliebak-Mohnke [2], 2014)

cL(CPn,ωFS) =
π

n+ 1
.

cL(B2n(1),ω0) =
π

n
.

cL(B2(1)× C(n−1),ω0) = π
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Theorem 2.14. (Cieliebak-Mohnke [2], 2014) The Lagrangian capacity satisfies

• cL(M,αω) = αcL(M,ω), ∀α > 0.

• If there exists a symplectic embedding i : (M1,ω1) → (M2,ω2) with π2(M2, i(M1)) =
0, then

cL(M1,αω1) ≤ cL(M2,αω2).

• 0 < cL(B2n(1),ω0), and 0 < cL(B2(1)× C(n−1),ω0) < ∞.

Remark 2.15. In the second bullet point above, the condition π2(M2, i(M1)) = 0
is very important. For any Lagrangian L in i(M1), there might be disks in M2 with
boundary on L which has area less than any other disk in M1 with boundary on L.

AM2
min(L) < AM1

min(L)

In this case and hence

cL(M1,αω1) > cL(M2,αω2).

For example, take M1 = B2n(1) and M2 = CPn, by the above theorem

cL(CPn,ωFS) < cL(B2n(1),ω0).

Conjecture 2.16. (Cieliebak-Mohnke [2], 2014)

cL(E(a1, a2, . . . , an),ω0) =
1n
i=1

1
ai

.

Theorem 2.17. (Pereira [5], 2022) If (X,λ) is a Liouville domain, then

cL(X, dλ) ≤ inf
k

MS1
k(X)

k
,

where MS1
k(X) is the kth-McDuff-Siegel capacity of X.

5



Corollary 2.18. Let XΩ be a four dimensional convex toric domain, then

cL(XΩ,ω0) = δ.

In particular, cL(E(a1, a2),ω0) =
12

i=1
1
ai

.

Proof. • Let δ = diagonal(XΩ), Lstd = S1(


δ
π
)× · · ·× S1(


δ
π
) ⊂ (XΩ,ω0), so

δ = Amin(Lstd) ≤ cL(XΩ,ω0).

•
δ ≤ cL(XΩ,ω0) ≤

MS1
k(XΩ)

k
≤ δ(k + 1)

k
= δ +

δ

k

Proof. (Proof sketch of cL(CPn,ωFS) =
π

n+1
)

Note that Lstd := S1( 1√
n+1

)× · · ·× S1( 1√
n+1

) ⊂ B2n(1) ⊂ CPn, so

π

n+ 1
= Amin(Lstd) ≤ cL(CPn,ωFS).

To prove: for every Lagrangian torus L in CPn, there exists a smooth disk : u :
(D2, ∂D2) → (CPn, L) with

0 <



D2

u∗ωFS ≤ π

n+ 1
.
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There is a holomorphic sphere passing through p with the constraint ≪ T n−1p ≫.
Stretching the neck of this sphere along ∂D∗

gL leads to a building:

ind(Cbot) = (n− 3)(2− l) +
l

i=1

(RS(γi) +
1

2
dim(γi))− 2n+ 2− 2(n− 1).

RS(γi) =
1

2
Nullity(γi) + Morse-ind(γi).

RS(γi) =
1

2
dim(γi) =

1

2
(n− 1).

ind(Cbot) = 2l − 2n− 2.

We must have l ≥ n+ 1.
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• Denote these disks by u1, u2, . . . , un, un+1. We have that

n+1

i=1



D2

u∗
iωFS ≤ π.

• 

D2

u∗
1ωFS ≤ 1

n+ 1

n+1

i=1



D2

u∗
iωFS ≤ π

n+ 1
.

• This proves

cL(CPn,ωFS) =
π

n+ 1
.

cL(B2n(1),ω0) =
π

n
.

Proof. (Proof sketch of cL(X, dλ) ≤ infk
MS1k(X)

k
)
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• Denote these disks by u1, u2, . . . , uk. We have that

k

i=1



D2

u∗
iωFS ≤ MS1

k(X).
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• For one of these disks, we have



D2

u∗
1ωFS ≤ 1

k

k

i=1



D2

u∗
iωFS ≤ MS1

k(X)

k
.

• This proves

cL(X, dλ) ≤ inf
k

MS1
k(X)

k
.
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